22 research outputs found

    A Classification of Hyper-heuristic Approaches

    Get PDF
    The current state of the art in hyper-heuristic research comprises a set of approaches that share the common goal of automating the design and adaptation of heuristic methods to solve hard computational search problems. The main goal is to produce more generally applicable search methodologies. In this chapter we present and overview of previous categorisations of hyper-heuristics and provide a unified classification and definition which captures the work that is being undertaken in this field. We distinguish between two main hyper-heuristic categories: heuristic selection and heuristic generation. Some representative examples of each category are discussed in detail. Our goal is to both clarify the main features of existing techniques and to suggest new directions for hyper-heuristic research

    Photoprotection in sequestered plastids of sea slugs and respective algal sources

    Get PDF
    Some sea slugs are capable of retaining functional sequestered chloroplasts (kleptoplasts) for variable periods of time. The mechanisms supporting the maintenance of these organelles in animal hosts are still largely unknown. Non-photochemical quenching (NPQ) and the occurrence of a xanthophyll cycle were investigated in the sea slugs Elysia viridis and E. chlorotica using chlorophyll fluorescence measurements and pigment analysis. The photoprotective capacity of kleptoplasts was compared to that observed in their respective algal source, Codium tomentosum and Vaucheria litorea. A functional xanthophyll cycle and a rapidly reversible NPQ component were found in V. litorea and E. chlorotica but not in C. tomentosum and E. viridis. To our knowledge, this is the first report of the absence of a functional xanthophyll cycle in a green macroalgae. The absence of a functional xanthophyll cycle in C. tomentosum could contribute to the premature loss of photosynthetic activity and relatively short-term retention of kleptoplasts in E. viridis. On the contrary, E. chlorotica displays one of the longest functional examples of kleptoplasty known so far. We speculate that different efficiencies of photoprotection and repair mechanisms of algal food sources play a role in the longevity of photosynthetic activity in kleptoplasts retained by sea slugs

    An effective heuristic for the two-dimensional irregular bin packing problem

    No full text
    This paper proposes an adaptation, to the two-dimensional irregular bin packing problem of the Djang and Finch heuristic (DJD), originally designed for the one-dimensional bin packing problem. In the two-dimensional case, not only is it the case that the piece's size is important but its shape also has a significant influence. Therefore, DJD as a selection heuristic has to be paired with a placement heuristic to completely construct a solution to the underlying packing problem. A successful adaptation of the DJD requires a routine to reduce computational costs, which is also proposed and successfully tested in this paper. Results, on a wide variety of instance types with convex polygons, are found to be significantly better than those produced by more conventional selection heuristics

    A new model and a hyper-heuristic approach for two-dimensional shelf space allocation

    Get PDF
    In this paper, we propose a two-dimensional shelf space allocation model. The second dimension stems from the height of the shelf. This results in an integer nonlinear programming model with a complex form of objective function. We propose a multiple neighborhood approach which is a hybridization of a simulated annealing algorithm with a hyper-heuristic learning mechanism. Experiments based on empirical data from both real-world and artificial instances show that the shelf space utilization and the resulting sales can be greatly improved when compared with a gradient method. Sensitivity analysis on the input parameters and the shelf space show the benefits of the proposed algorithm both in sales and in robustness

    On the automatic discovery of variants of the NEH procedure for flow shop scheduling using genetic programming

    No full text
    We use genetic programming to find variants of the well-known Nawaz, En-score and Ham (NEH) heuristic for the permutation flow shop problem. Each variant uses a different ranking function to prioritize operations during schedule construction. We have tested our ideas on problems where jobs have release times, due dates, and weights and have considered five objective functions: makespan, sum of tardiness, sum of weighted tardiness, sum of completion times and sum of weighted completion times. The implemented genetic programming system has been carefully tuned and used to generate one variant of NEH for each objective function. The new NEHs, obtained with genetic programming, have been compared with the original NEH and randomized NEH versions on a large set of benchmark problems. Our results indicate that the NEH variants discovered by genetic programming are superior to the original NEH and its stochastic version on most of the problems investigated

    Linear combinations of heuristics for examination timetabling

    No full text
    Although they are simple techniques from the early days of timetabling research, graph colouring heuristics are still attracting significant research interest in the timetabling research community. These heuristics involve simple ordering strategies to first select and colour those vertices that are most likely to cause trouble if deferred until later. Most of this work used a single heuristic to measure the difficulty of a vertex. Relatively less attention has been paid to select an appropriate colour for the selected vertex. Some recent work has demonstrated the superiority of combining a number of different heuristics for vertex and colour selection. In this paper, we explore this direction and introduce a new strategy of using linear combinations of heuristics for weighted graphs which model the timetabling problems under consideration. The weights of the heuristic combinations define specific roles that each simple heuristic contributes to the process of ordering vertices. We include specific explanations for the design of our strategy and present the experimental results on a set of benchmark real world examination timetabling problem instances. New best results for several instances have been obtained using this method when compared with other constructive methods applied to this benchmark dataset
    corecore